

Course Name: Digital Circuits and Logic

**Course Number:** CST\* E145

Credits: 4

**Catalog description:** A study of the elements of digital logic design, digital circuits, and the fundamentals of a modern digital system. It begins with an explanation of binary number systems, progresses through logical design and into PC systems. Laboratory experiments are used to provide practical experience.

Prerequisite: MAT\*095 or placement beyond MAT\*095 and CSA\*E105 or permission of the instructor

or

**Corequisite or Parallel:** MAT\*095 or placement beyond MAT\*095 and CSA\*E105 or permission of the instructor

## **General Education Competencies Satisfied:**

HCC General Education Requirement Designated Competency Attribute Code(s):

None

Additional CSCU General Education Requirements for CSCU Transfer Degree Programs:

None

**Embedded** Competency(ies):

None

**Discipline-Specific Attribute Code**(s):

□ COMP Computer Science Elective

## **Course objectives:**

**General Education Goals and Outcomes:** 

None



## **Course Specific Objectives:**

- 1. Gain a theoretical understanding of binary elements and number systems
- 2. Be able to explain the relationship between a logical requirement, the number system and a practical logic implementation
- 3. Conduct a digital design through DeMorgan's theorem and a Karnaugh map reduction to a circuit implementation
- 4. Be able to choose circuit elements, including gates, arithmetic elements, registers and storage devices to synthesize a requirement
- 5. Successfully implement and run a logic simulation on the PC in a manner similar to that done in industry

## **Course Content:**

- 1. Fundamental digital concepts and binary electronics
  - a. Analog vs Digital
  - b. Number Systems
- 2. Boolean algebra and combination logic
  - a. Logic representation
  - b. Reduction Theorems
- 3. Binary-based number circuit concepts for performing
  - a. Digital Arithmetic
  - b. Flow Charts
- 4. Flip-flops, counters and clock generation
  - a. Basic concepts
  - b. Simulation
- 5. Memory elements
- 6. Analog interfaces
  - a. Analog to Digital and Digital to Analog Converters
  - b. Real World Interfaces
- 7. Digital bus concepts and systems interaction
  - a. Requirements Analysis
  - b. Systematic design

Date Course Created:

Date of Last Revision: 04/03/2017